8x-(3x-5)-2x=2x(x+2)+5

Simple and best practice solution for 8x-(3x-5)-2x=2x(x+2)+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8x-(3x-5)-2x=2x(x+2)+5 equation:



8x-(3x-5)-2x=2x(x+2)+5
We move all terms to the left:
8x-(3x-5)-2x-(2x(x+2)+5)=0
We add all the numbers together, and all the variables
6x-(3x-5)-(2x(x+2)+5)=0
We get rid of parentheses
6x-3x-(2x(x+2)+5)+5=0
We calculate terms in parentheses: -(2x(x+2)+5), so:
2x(x+2)+5
We multiply parentheses
2x^2+4x+5
Back to the equation:
-(2x^2+4x+5)
We add all the numbers together, and all the variables
3x-(2x^2+4x+5)+5=0
We get rid of parentheses
-2x^2+3x-4x-5+5=0
We add all the numbers together, and all the variables
-2x^2-1x=0
a = -2; b = -1; c = 0;
Δ = b2-4ac
Δ = -12-4·(-2)·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-1}{2*-2}=\frac{0}{-4} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+1}{2*-2}=\frac{2}{-4} =-1/2 $

See similar equations:

| x+29=-172/7 | | 50x=42.5 | | 16=x+5/x | | x+29=172/7 | | 2^4=x+5/x | | 18-2(g+4)=3(2g-6) | | 4/7=3/5+b | | 5x+3x(2x-1)+2=5x(6x-4) | | 0.23x+1.8=1,4x–5.22 | | z^2+21=0 | | 112=(8x-25) | | (X+6/2)-6=(2x-1/3) | | 212/9+r=-117/8 | | 112=(9x+34)+(8x-25) | | 1.5x=150 | | 112=(9x+34) | | (8x-25)=(9x+34)+112 | | 8(4-4k)=-5k-32 | | (t+2)^2=4 | | (8x-25)=(9x+34) | | 8(5d-2)=-25 | | (9x+34)+(8x-25)=112 | | 2x(1-4x)=9-x | | (9x+34)+112=(8x-25) | | (8x-25)+112=(9x+34) | | 4x(2x+1)=12 | | 144=16t^2+96t+4 | | 258/9h=-154/9 | | 2.54=35.9/x | | -(4/3)x=-4 | | 8x-5(3x+1=x+11 | | (3+5x)(2-3x)=12-15x2 |

Equations solver categories