If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x-6+2=2x(4-6x)
We move all terms to the left:
8x-6+2-(2x(4-6x))=0
We add all the numbers together, and all the variables
8x-(2x(-6x+4))-6+2=0
We add all the numbers together, and all the variables
8x-(2x(-6x+4))-4=0
We calculate terms in parentheses: -(2x(-6x+4)), so:We get rid of parentheses
2x(-6x+4)
We multiply parentheses
-12x^2+8x
Back to the equation:
-(-12x^2+8x)
12x^2-8x+8x-4=0
We add all the numbers together, and all the variables
12x^2-4=0
a = 12; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·12·(-4)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*12}=\frac{0-8\sqrt{3}}{24} =-\frac{8\sqrt{3}}{24} =-\frac{\sqrt{3}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*12}=\frac{0+8\sqrt{3}}{24} =\frac{8\sqrt{3}}{24} =\frac{\sqrt{3}}{3} $
| h+-73/4=181/2 | | -7f-10=8=4f | | 8w+9=9w | | X/2+7=8-z/2 | | 2^{3x-1}=32 | | X+2=2+2x | | 24x+42=0 | | -152=-8(y+9) | | 14-6X=5(x-6) | | 2-9u=11 | | 5.5x+.56=-1 | | 4c+6+3c=27 | | 640÷(9x+8)=8 | | 6+2a-8a=42 | | -6+7d=8d | | 9+8x=119-3x | | 2(x-2)=4x+3x+11 | | 6-j=24 | | 4.9t^2-2t+500=0 | | 4x^2+4=2 | | 120x+40=180+20 | | 5x-17=-71+11x | | 10x^2+12x-14=0 | | 3(x+4)=−4x+8 | | 10x^2+12x-7=0 | | -14y=256-2y | | Y=3.98x | | 12-2x=-51+5x | | Y-4=-2x-6 | | 2x-13=-28+5x | | 3c-3-3(6-2c)=27 | | -(x+1)=-4x+2 |