8x/x+3-8=x-39/x-3

Simple and best practice solution for 8x/x+3-8=x-39/x-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8x/x+3-8=x-39/x-3 equation:



8x/x+3-8=x-39/x-3
We move all terms to the left:
8x/x+3-8-(x-39/x-3)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: x-3)!=0
x∈R
We add all the numbers together, and all the variables
8x/x-(x-39/x-3)-5=0
We get rid of parentheses
8x/x-x+39/x+3-5=0
We multiply all the terms by the denominator
8x-x*x+3*x-5*x+39=0
We add all the numbers together, and all the variables
6x-x*x+39=0
Wy multiply elements
-1x^2+6x+39=0
a = -1; b = 6; c = +39;
Δ = b2-4ac
Δ = 62-4·(-1)·39
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-8\sqrt{3}}{2*-1}=\frac{-6-8\sqrt{3}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+8\sqrt{3}}{2*-1}=\frac{-6+8\sqrt{3}}{-2} $

See similar equations:

| 6-7x-14=8-2x+3x | | 90=x+(16x+39) | | A+5=5a+ | | 2(x+5x)=96 | | 8x^2+3x-1.5=0 | | x+143+152+116+125+140+139=900 | | 12b+17b+6=0 | | 0=-16x^2+112x+25 | | 64^2x-3=16^x | | 3^x+2=138 | | 2016=1/2a×12+12 | | 180=19x+x | | 100-x+x+2x=180 | | 2(2x−6)=28 | | 5/2t-4=7/2t | | 2(2x−6)=2(2x−6)=28 | | 15x+2=15x+2=10x+710x+7 | | 7j-21=3j+7 | | 3x*3x-15x=0 | | 2352=a14+14 | | 25^2x-2=5 | | 2352=a×14+14 | | f-6/5=15 | | P+y=M/M | | 2=m÷2-7 | | P=M-y/M | | 21/90*(2,5x-6)-x-3/12=1,25X+1/10 | | 4n+6=3n+8 | | 5x^2-8=-62+2x^2 | | (-4x+36x-16x)/(-4)=0 | | 5=50+10n | | 3x*3x+9x=0 |

Equations solver categories