If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+10x-1=0
a = 8; b = 10; c = -1;
Δ = b2-4ac
Δ = 102-4·8·(-1)
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{33}}{2*8}=\frac{-10-2\sqrt{33}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{33}}{2*8}=\frac{-10+2\sqrt{33}}{16} $
| 6x-2x+3=x+x+11 | | x*x*x=168 | | 4x+16x+6=x+3x+16 | | 324/x=18 | | 9x+7x=25+5x | | 6x+8-3=4x+2x+15 | | 5x+8/7x-1=0 | | x2-4x=14-9x | | 0.18(3x-4)=0.04x+0.08 | | 11x/13-4=14 | | 22=-16x^2+33x+6 | | 2v+12=5v+3 | | 3(e+2)=6 | | 7x+10-6=15 | | 2x-4=14x-84 | | 190x-x^2=7000 | | -0.151=(x-26)/4 | | 20x-40=2x+14 | | 7x-10=3x+11 | | 7x-10=3x=11 | | 9(x-60=18 | | 30=16+8x | | x+40=1.732x | | -5/4y+4=-2/3y-1/3 | | 2x-3=x=3 | | (x-5/2)^2=(49/4) | | (x-5/2)=(49/4) | | 2(w+6)=10w-42 | | -2.1+v/3=-9.6 | | 3(u-1)-7=-5(-3u+1)-2u | | 15x-230=5x-10 | | 10=-5/3u |