If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+120x=448
We move all terms to the left:
8x^2+120x-(448)=0
a = 8; b = 120; c = -448;
Δ = b2-4ac
Δ = 1202-4·8·(-448)
Δ = 28736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28736}=\sqrt{64*449}=\sqrt{64}*\sqrt{449}=8\sqrt{449}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(120)-8\sqrt{449}}{2*8}=\frac{-120-8\sqrt{449}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(120)+8\sqrt{449}}{2*8}=\frac{-120+8\sqrt{449}}{16} $
| X+3/16=1/8+(x-7/4) | | 9y-45=60 | | y=4(4y+45) | | X+3/16=1/8+x-7/4 | | 3n-3n+2n-2=16 | | (X+1)(6x-7)=0 | | 20t-11t-9t+5t-5=15 | | -3/4=-4/7u | | 5(x+2)+10=45 | | 5x-1=10-21 | | X(7x+8)(x-3)=0 | | 9y-45=30 | | 3n-n-1=13 | | 17s+s-17s-1=13 | | x-4=3x-22 | | 9y-45=15 | | 4x+1/24-3x=5/6 | | 16x-7x+4=13 | | 9n-2=7;+50 | | 2.50x+45=3.75x | | 18n+6n-15n=18 | | $2.89=0.86b | | 293=140-y | | 4u-4u+2u+u=12 | | 23=293-x | | -x+203=97 | | 0.3z-0.05=-0.08z | | 17j-j-6j-10j+j=6 | | -7(x+2)-17=20+5 | | h-h+2h+2h=20 | | 7y=27+35 | | 7=n/20+6 |