If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+12x+3=0
a = 8; b = 12; c = +3;
Δ = b2-4ac
Δ = 122-4·8·3
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{3}}{2*8}=\frac{-12-4\sqrt{3}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{3}}{2*8}=\frac{-12+4\sqrt{3}}{16} $
| 7-2w=15 | | 4.6(4.3r-4.9)=76.7 | | 5n=3=3n+27 | | 9y+7=5y–5 | | 16x+9=7x+36 | | 4x+25-17=0 | | 5-1÷4z=3 | | 6x+3–(3x–7)=12 | | 4(x+5)=90 | | 5y+16=3y+22 | | (6x+3)–(3x–7)=12 | | 2x²+18=0 | | 5a+6/4=5 | | 9x-8=3x+4-x | | 5a+6=5 | | 4•(x-3)=20 | | a–5=15 | | -5x0.2=x-9 | | 1.414(x)*1(x)=1 | | 3,3–2,5x=5,5x+0,1 | | 1.414x*x=1 | | 2x2+4x+20=0 | | (3x+4)^2-(x+2)^2=0 | | Q=3a/(1-5) | | (3x+4)^2=(x+2)^2 | | Q=a/(1-5) | | 23/2-3y/5=y | | 0.8x-0.8=1.6 | | 5/4x=30.5 | | 1/6x+18=12 | | 3z–4=11 | | x2+12x-14=0 |