If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+15x+2=0
a = 8; b = 15; c = +2;
Δ = b2-4ac
Δ = 152-4·8·2
Δ = 161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{161}}{2*8}=\frac{-15-\sqrt{161}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{161}}{2*8}=\frac{-15+\sqrt{161}}{16} $
| 6x^2-11x-10=25 | | x2-12x-160=0 | | 63-(11y-4y)=0 | | 4/y+7/y=74 | | b²-b-30=0 | | b∧2-b-30=0 | | 1y-2y=10 | | 28=11x-7x | | 17r-4r^2=15 | | -440+30x=20 | | 60x=50x-1540 | | 5/a-9/a=-10 | | 60x=590x-1000 | | -540+60x=50x-1000 | | -10(54)+60x=50(x-20) | | 1/2*(2b-2)(2b)=60 | | 3x+5×=64 | | 3x+33=2x | | 4=6w-4w | | 80x=1130-8x | | -1090+80x=40x-8x | | 83=2-9w | | 81-86÷2(9×2)-50=n | | -10(109)+80x=5(x-8) | | 2(t-3)+2=2(2t-7) | | 2x+5 + x = 29 | | -3x+52+7x=105+27-x | | 19(x+5)=2(x+9)+230 | | 7x+6=x+54 | | 2m^2=5m-5 | | 8-6=22x | | -0.10(17)+0.45x=0.05(x-2) |