If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+15x+3=0.
a = 8; b = 15; c = +3;
Δ = b2-4ac
Δ = 152-4·8·3
Δ = 129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{129}}{2*8}=\frac{-15-\sqrt{129}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{129}}{2*8}=\frac{-15+\sqrt{129}}{16} $
| X-5=-3(3-x) | | 10=2.5t | | -6+3a-a=4a+4a+5 | | 4+16=5y | | -5g-7g+g=5g-4+g | | 6=0.50z | | y^{4}+13y´´+36y=0 | | 7x+2x+5=5x+9x-1 | | (y–2)–3(y+4)=0 | | 6/5=3n/4 | | 6+14x-58=4x+28 | | 2n=2^21 | | 9a+8=2a-3-5a | | 12,4(x−5,9)(x−22)=0 | | 5y=1.3-1.3=21.3-1.3 | | 5y+1.3-1.3=21.3 | | 40=9x+4x+5 | | -5=7n=9n+11 | | 4x2+15x+3=0. | | 8d-4=d-2 | | -7w-5=7w+9 | | 9+15=m | | 9(x+1)-(x+2)=78 | | 2(x-1=42 | | 8a=6+a-1 | | 28-9=b | | w/11-2+2=7+2 | | 7.7=3.7x | | 1(1x-1)=23 | | -(x+7)=4(x+9)-x | | a/5+6-6=11-6 | | 3x-14+5x=3x-14+5x |