If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+16x+3=0
a = 8; b = 16; c = +3;
Δ = b2-4ac
Δ = 162-4·8·3
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{10}}{2*8}=\frac{-16-4\sqrt{10}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{10}}{2*8}=\frac{-16+4\sqrt{10}}{16} $
| 16y+18=-66 | | 9-k=10k+20 | | 14x-34=64-2x | | 6x-1-3=-10 | | q=2/5=2q+11/7 | | 6-(3y-1)=4-4y | | 5=(x/4)-3 | | 2y/3+1=4y/3+5 | | L+8+6w=156 | | 16=x+(2x+1) | | n/8=39 | | 20=-2u | | 1/2n+45=172 | | F(x)=|13x| | | 5=x-3/4 | | 2x-38=30 | | 3.9m-4=4.7m+8 | | 5=x/4-4 | | 2x-38=39 | | 4(-2+1)=6x+18 | | 5(4x/5-x)=10(x/10-9/2) | | 27.98=5g+3.83 | | 15+m-3+4=-8m+7 | | 0.08(y-5)+0.04y=0.16-0.7 | | 52=-63+5b | | 16=y-14 | | 8y=12=2y-18 | | 8-3(-3+7x)=-7 | | 4m-16=4(7m-4) | | 4x-1=4x+9 | | 8-3(-3+7x)=-7=3x | | 180=x+x+(3x+25) |