If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+20x-8=0
a = 8; b = 20; c = -8;
Δ = b2-4ac
Δ = 202-4·8·(-8)
Δ = 656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{656}=\sqrt{16*41}=\sqrt{16}*\sqrt{41}=4\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{41}}{2*8}=\frac{-20-4\sqrt{41}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{41}}{2*8}=\frac{-20+4\sqrt{41}}{16} $
| 8x2+17x+8=0 | | 4x2-11x-12=0 | | (m+3)/8+(3m-1)/14=(2m-3)/7+(3m+1)/16 | | x+20135=10135 | | x/3-2(x-1)=5x/2-3 | | 5x/4-10x/3=15 | | -20x=-88 | | 16x2+19x-2=0 | | 15x2+13x-6=0 | | 5x2-7x-2=0 | | 11x2-19x+9=0 | | 3x2-18x+5=0 | | 6x2-18x+20=0 | | 17x2+12x+3=0 | | 3x2-17x-2=0 | | 15x2-11x-13=0 | | 14x2+x-9=0 | | 7x2+15x-7=0 | | 17x2-20x-16=0 | | 20x2+5x-10=0 | | 13x2+7x-9=0 | | 16x2+7x-2=0 | | 18x2-6x+9=0 | | 20x2-2x+1=0 | | 4x2-19x-11=0 | | 17x2-18x+12=0 | | x2+7x+17=0 | | 4x2+11x-5=0 | | 14x2-18x-14=0 | | 19x2+3x-9=0 | | 13x2+7x-19=0 | | 7x2+8x-14=0 |