If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+20x=0
a = 8; b = 20; c = 0;
Δ = b2-4ac
Δ = 202-4·8·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20}{2*8}=\frac{-40}{16} =-2+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20}{2*8}=\frac{0}{16} =0 $
| (2x-61)+(x-17)+3=360 | | 5t-1=54 | | 1/6x^-(4/3x-10/4)=0 | | 8k=4=36 | | 9r^2-3r-5=0 | | 138+90+3x=360 | | P-2(2p+3)=0 | | 2(x-1)^2=-16 | | y+5y-35=180 | | -4(7-5x)=20 | | 0.2x0.6=2 | | 2(3x+1)/5=5 | | 1/4(8x-20)-16=10x+51 | | 3x-x=38 | | 6/f=2.5 | | 2x−1=9 | | 108-y=245 | | 7(3x+2)=183 | | 1/2x+2/3+5=5/2x+6 | | 7x+8-3x=4 | | y-9.35=2.16 | | 8v-2+4v=17 | | x=1/2(x-4)+(2x-7) | | 37+x=2(8+x+3+x) | | 6x+10-4x=15 | | -28=-4+2(y-6) | | 12-15b=17 | | (2x+1)+(5x-5)+x=180 | | 9p-5=35 | | 9u-5=35 | | 5f-11=28 | | X^2+8x+300=0 |