If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+22x+15=0
a = 8; b = 22; c = +15;
Δ = b2-4ac
Δ = 222-4·8·15
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-2}{2*8}=\frac{-24}{16} =-1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+2}{2*8}=\frac{-20}{16} =-1+1/4 $
| x-8+16=0 | | 19=10+3m | | -20=-4-8n | | -4p+9=11 | | x-30x-675=0 | | 2x^2–18x+1=0 | | 56÷x=8 | | 17x-2=97 | | x-21x+20=0 | | 8x-2(×+6)=×+47 | | 7x-1=19x+3 | | 9=48+-4.9x2 | | (5/6)x-2x+(4/3)=(5/3) | | 4x+14=8x+8 | | 9(x-5)=8(x+5) | | -2/15=49/30w | | 3.2(8-y)=6y | | X+7y=154 | | 3x+19+7x-8=180 | | X+7y=129 | | 4x+14+5x+35=180 | | -12=b-8 | | 5(x-5)-7x=37 | | 4x+14=5+35 | | 7y=116 | | 5(7t+2)=45 | | 6a-3a-2a=16 | | 4x-5=8x+7 | | -4-4k=8 | | 52+15y=13y | | -30-6z=-11z-10-40 | | (3-u)(4u+9)=0 |