If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+24x=0
a = 8; b = 24; c = 0;
Δ = b2-4ac
Δ = 242-4·8·0
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-24}{2*8}=\frac{-48}{16} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+24}{2*8}=\frac{0}{16} =0 $
| 5x+3=9x−21 | | 4y-5+2y=19 | | 15*5+6-x=58 | | 4u+17=45 | | 9x2-9=0 | | x-45=36 | | t2-10t+25=0 | | 7t=46 | | 3|8+d|-1=29 | | 2/3n=-16 | | 10n-5÷51=2n-1 | | z2+8z=-15 | | (4/3)-4y=4 | | 13+a=15 | | 0.18(y-6)+0.10y=0.08y-1.8 | | 13s^2+4s-9=0 | | x2=23 | | 3(5x-3)=-16 | | -7(2+3x)=182 | | 4|2-9y|=28 | | r2-30r+29=0 | | 3|x|+1=10 | | 4x^2-51x+161=0 | | 16k^2+12k+9=0 | | X+18+4x=-28-4x-35 | | .50x+.15(50)=37.5 | | 8n^2+17n+2=0 | | m(15+1)+7=11m+(15-9)+5m | | 2+13x-5=15x+9-2x | | 7x+16-6x=-5-12 | | x+(1/2x+3)=180 | | 24-47=3(x-3)-5 |