If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+25x-10=0
a = 8; b = 25; c = -10;
Δ = b2-4ac
Δ = 252-4·8·(-10)
Δ = 945
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{945}=\sqrt{9*105}=\sqrt{9}*\sqrt{105}=3\sqrt{105}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-3\sqrt{105}}{2*8}=\frac{-25-3\sqrt{105}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+3\sqrt{105}}{2*8}=\frac{-25+3\sqrt{105}}{16} $
| -15a^2-25÷5=-40a-5 | | 6x+13x=19x | | 8x-5+5x+17=90 | | 5(x-6)=2x-9 | | -10n=-12 | | -2.5=x(4x-3) | | 4x2x=72 | | 27x+5=30x-1 | | 17.5=21/3x | | 14x-8+15x+14=180 | | 5x+800=4,000 | | -2.5(4x-3)=x | | 130880=2^x | | 2x-4(x+3)=2 | | 5x+7+63=90 | | 96=6(k+8 | | −41a−4=47a− | | 105+4x-13=180 | | 6x×57=-6+3x | | 50/n*10=n*20 | | x=18+3.5x | | 1/2x+5×8=200 | | 5x-(x-7)=35 | | X/2=3(2x-11) | | 15+16b=17b | | 3p+8=10 | | 3x-5(x+1)=5 | | -3(x×5)=39 | | 4+9x=8-3x | | 323+x=31 | | (2x+4)/5-6=8 | | -132=8+7(5x-5) |