If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+26x+10=0
a = 8; b = 26; c = +10;
Δ = b2-4ac
Δ = 262-4·8·10
Δ = 356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{356}=\sqrt{4*89}=\sqrt{4}*\sqrt{89}=2\sqrt{89}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-2\sqrt{89}}{2*8}=\frac{-26-2\sqrt{89}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+2\sqrt{89}}{2*8}=\frac{-26+2\sqrt{89}}{16} $
| -I2x-4I=10 | | 2q+–6=4 | | 3x-6X+10=x | | 8x–6+2x+4=18 | | 2z−43=3 | | x/6x-2=-4x+3 | | 6v+27=99 | | 7r-4r+36=-9+2r+16r | | x^2-14x+76=0 | | 4(4x-14)-14x=2(-x+19) | | 4^2x=800 | | 12/42=x/20 | | (x+5)/2=(2x+10)/3 | | n2=180 | | n=180 | | V=2m-3 | | X(5y-7)=4(y-3) | | 14.62=3u+8.62 | | 34=x=46;=12 | | | | 5x+3=2/5 | | h/6-17=-17 | | q+85=−2 | | 3/7x−3=21 | | 3(2x-10)+4=36 | | 8x6=8x() | | 201/2=1/3t | | 17n+19n+233+19=360 | | –8s+10=3−9s | | (2x+1)(3x+3)=9 | | 4n+5n+301+41=360 | | -2c-6=11 |