If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+36x=0
a = 8; b = 36; c = 0;
Δ = b2-4ac
Δ = 362-4·8·0
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-36}{2*8}=\frac{-72}{16} =-4+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+36}{2*8}=\frac{0}{16} =0 $
| 4*6x=15 | | 9-2y=-2y+9 | | 2(5.25+6.2x)=4(23.1x12.68) | | 2(2x+5)+4=9x+6 | | -3(2x-7)=-8x+39 | | -5c-3=4-5c | | X^2+y^2=105 | | 3=(-1.5n) | | (3x+17)+(5x-5)=180 | | (x+10)=50 | | R=4x-50 | | -7-6b=9-10b | | -2d+11d-4=-4+9d | | 1/4p*3/8p=4 | | -9y-20=-56 | | -6-4w=-5w | | 136=3x-5(6x+16) | | 3+10)9x+4)=763 | | -10=t-2 | | -9k-13=-8k | | -3(2x-7)=-8+39 | | 6=7x+2x+6 | | (3-x)+(2x)=30 | | 6(w+7)=22+4w | | 9c2+5=18c | | 2w-8=48 | | r=310 | | -7(7x-7)=49x+49 | | 5n^2+10n+15=0 | | 12t=28 | | .5x+8-10=6 | | |3x|+11=44 |