If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+40x+48=0
a = 8; b = 40; c = +48;
Δ = b2-4ac
Δ = 402-4·8·48
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-8}{2*8}=\frac{-48}{16} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+8}{2*8}=\frac{-32}{16} =-2 $
| x/2=x+60 | | 3(x-5)=2+(6x+1)-(3x-7)+4-3x. | | y/8+5/8=y/3-5/8 | | 166=16x | | x/3=x+60 | | 3n=16+(20) | | 2x+7-5x=4x-21 | | 5(2x-5)-3=5(x-3)-3 | | 4x-2(x+9)=3x-4 | | (8+4n)/4=12 | | m/23+16=20 | | G(x)=3/4-3x | | 3x-2=7+7x | | -6x+7=12 | | X/3+x-1/2=-4 | | 4+6.25x=44.25 | | 6x-(3x-14)=42 | | (x+4)-12=6 | | |3k-k|=2|k+2| | | 4/3+2/3x=17/6+7/2x+1/2 | | 7=13+7x | | 3/4(w+2)=1.33 | | 6=3+y/8 | | 18-5p=-3+2p | | {x+6}=13 | | z3-4z=0 | | 3x/4+5=2x | | x^2=6x-80 | | 41+2y=71 | | (5x)^4/3=1296 | | 2x+26-x=7+5x-5 | | x-1/16=3/4 |