If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+40x-112=0
a = 8; b = 40; c = -112;
Δ = b2-4ac
Δ = 402-4·8·(-112)
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5184}=72$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-72}{2*8}=\frac{-112}{16} =-7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+72}{2*8}=\frac{32}{16} =2 $
| 1/3(x-3)=4/3x+5 | | 5r+3=13 | | 3=7+4y | | 3=16-c | | 5u-6=24 | | 180-(5x-2)+2x+76=180 | | (3x-2)(4x-3)=0 | | 3x-2)(4x-3)=0 | | c/3-2=3 | | 5=s=7 | | 3x+24+5x=8(x+3) | | (5a+3)(7a-4)=0 | | 1/3(x-3)=4×1/3x+5 | | 4z/9+8=9 | | 10=6−2j | | (6n+7)(3n-8)=0 | | 5=k-76/4 | | 5=k-764 | | 6-3b=45 | | -7x+5x2+10=x | | 6x-57=22 | | 4^x=8^x−1 | | 8v=-8 | | 1/2(4x-10)+5=x-4 | | 8y+7+32+4y+8+8y+7=360 | | 70-50+n=109 | | m/10=-8 | | t+93/6=-1 | | t+936=-1 | | 1/8+x=7.4 | | 4(x–2)=4x+10 | | x(8x^2)-27=0 |