If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+4=132
We move all terms to the left:
8x^2+4-(132)=0
We add all the numbers together, and all the variables
8x^2-128=0
a = 8; b = 0; c = -128;
Δ = b2-4ac
Δ = 02-4·8·(-128)
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-64}{2*8}=\frac{-64}{16} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+64}{2*8}=\frac{64}{16} =4 $
| 3(2/3x-6)=-4 | | 9x-12=2x-12 | | -7-6x=1-4x | | 25p+10=30p-15 | | 120=(2x10) | | -4|3x-1|=20 | | -8(5k+4)=-112 | | x+43+40+31=180 | | 1-4n=n+1 | | X+2/4=1-x+5/7 | | -8u+5(u-3)=-27 | | x+7.2=-10 | | x=9+0.04 | | 2(x+5)=5+10 | | 5(3x+9)=-40+55 | | −3x+14=−3x−14 | | x/19=-12 | | 8=4c-7 | | 3a+2a=180 | | 6=2(n-5) | | f(10)=9 | | 7a+5a+60=180 | | 15=23–4x | | 2^x+2^x+2^x+2^x=2^16 | | (1/x-2)=5 | | -6w+6=-3(w-7) | | 2x+4=2x−3 | | xx5=330 | | 11x-3+5x+6+65=180 | | 6(x+3)-20=17+3(2x-5) | | n/13=-7 | | 5(z-2)=-2(z+1)+6 |