If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+51x+18=0
a = 8; b = 51; c = +18;
Δ = b2-4ac
Δ = 512-4·8·18
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(51)-45}{2*8}=\frac{-96}{16} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(51)+45}{2*8}=\frac{-6}{16} =-3/8 $
| 8+2x=3x+x | | 2x2+8x+26=0 | | (x²+1/x²)²-2=x⁴+1/x⁴ | | 35+25u=10250 | | 104.50-18.50/2=x | | 5/115=18/x | | 35l+25=10250 | | 6=4x-9-x | | 12/5w+3/5=108/5 | | 2(r+6)=14 | | 36/(x+3)=4 | | 22/5w+3/5=21 | | 196=7+x | | 6(3-x)-2=-2x+6 | | 4(x+6)=66 | | 11/2u-8=-8 | | -3.4=0.35r-3 | | x+22+2x+13=180 | | -(2w/8w-5)+4=(5/8w-5) | | H=-16t^2+72t+520 | | 3x+(x+10)=45 | | 37=-3+5(x+-6) | | 22-17x=5x | | 7x=4x+108 | | (7n-4)^2-31=0 | | -16s-19=47 | | -(2w/8w-5)=(5/8w-5) | | t+12+3t=180 | | x/16-1/4=1 | | t=12=3t | | 43.76+0.10m=80 | | 43.76 + 0.10m = 80 |