If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+56x=0
a = 8; b = 56; c = 0;
Δ = b2-4ac
Δ = 562-4·8·0
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-56}{2*8}=\frac{-112}{16} =-7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+56}{2*8}=\frac{0}{16} =0 $
| 3.6x=288 | | 28n-56=336 | | R(x)=(x+1)(x-3) | | 6x+x=8+2x+3x | | 7w-14;w=9 | | J(x)=1-(2x-9) | | 5n-10=3n=6 | | 4w+81=13w | | F(x)=3x17 | | x+10x/100=200 | | 7v=24-v | | 3k+6-k=24 | | (9+v)(2v-1)=0 | | 7b-28=-3b+2 | | -21-n=-8 | | (x-2)(0.5x-4)=-(x-2)(x-4) | | x^2=-10x+39 | | x^2=-10x=39 | | (x-2)(0.5x)=-(x-2)(x-4) | | 10-x+5/2=120 | | 40=9x-5 | | x*x=20*x-100 | | 2x/9+1/3=4/5 | | 18.5+8a=7.5(6.5a-7) | | y/15+17=22 | | x*x=8*x-24 | | 0.2x-0.6=2.6 | | 4x+-9=3x+29 | | 1/7x+3=15 | | ((5x−16)^3−4)^3=216,000 | | -8=-2(y+9) | | -4(x+10)=4x+63 |