If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+6x-5=0
a = 8; b = 6; c = -5;
Δ = b2-4ac
Δ = 62-4·8·(-5)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-14}{2*8}=\frac{-20}{16} =-1+1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+14}{2*8}=\frac{8}{16} =1/2 $
| 9x+9x-21=33 | | 35=3/5(x+10) | | 12x+15119= | | 3x^-39x+120=0 | | C=40.08d | | 51+k=-42 | | 11.2+x=-46.7 | | C=40d-0.08 | | 50=42+c | | 2p+2.4=3.6 | | 22+0.25p=62 | | 2x+3-x-6=180 | | 2×t12=4 | | (f-11)-2=-3 | | -5x+7=-11 | | 741=w+23 | | 1728^x=12^9x^+24 | | C=40+0.08d | | 2×t12=4= | | 18=35(x+10) | | 5^(2x)=130 | | 10x+15=7x+12 | | C=40-0.08d | | z-951=(-191) | | 4x-4=8-x | | 15.6=h/5+12.2 | | y+19-1=0 | | -5(w-3)=10 | | m/9+2/3=7/3 | | 5u-2=-23 | | 3(v-7)=57 | | 1728^x-12^9x=24 |