If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+7x+1=0
a = 8; b = 7; c = +1;
Δ = b2-4ac
Δ = 72-4·8·1
Δ = 17
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{17}}{2*8}=\frac{-7-\sqrt{17}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{17}}{2*8}=\frac{-7+\sqrt{17}}{16} $
| 3(1/10s=6(1/5 | | 3(x-2)=-3x+2* | | N^2+20n=10 | | -6n-12=12 | | 2=5a-3 | | 4y-3=6y-31 | | 9x-11+4x+1=7x-3 | | 5x^2+22x2=-6 | | 9x-11=4x+1+7x-3 | | 37=6d+13 | | x²+12x+11=0 | | 1-v=196 | | 0.15x+0.05(8-x)=0.10(-4) | | 3(h-0.8)=4h+4 | | 190v=198 | | `x``8x=20+4x` | | 21×(-4)=y÷12 | | y+3.7=2.3 | | 100=a10 | | 9=3x^2+2x+1 | | 100=a110 | | a+1/7=-6/7 | | 74.70=a+11.7 | | h+13=12 | | Y=x/4x+1+4x² | | x-7+2x-21+x=180 | | 1÷4(1÷3k+9)=6 | | -7=-5+a/10 | | 65.10=v+39.1 | | 1/5x+12=1/7x+18 | | (4-2x)(7-2x)=88 | | 45=2x+3x+8-3 |