If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+7x=0
a = 8; b = 7; c = 0;
Δ = b2-4ac
Δ = 72-4·8·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-7}{2*8}=\frac{-14}{16} =-7/8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+7}{2*8}=\frac{0}{16} =0 $
| 83x-2x+3x=98-3x | | 41-50+6x.5x=-9 | | 8x=13=29 | | 10x(6x+20)=180 | | 10x=(6x+20) | | x=1/2((360-x)-3x) | | b+7=-14 | | (-3x+2)(1x+1)=0 | | (2x+8)=(4x+4) | | X+34=2x-14 | | 25q-11=10 | | 2x+6x=3x+6 | | 5x-34=2x-67 | | 3x-20=6x-50 | | -5x-34=2x-67 | | 4.3x1.7x=41.94 | | -15/4x^2+10x=0 | | 3b+7=4b-4 | | 8+9y=-19 | | 3*(x+4)=21 | | 180=(8x+12)+(12x+2)+(20x+6) | | 180=(2x+60)6x | | 4b-7=3b+2 | | 90=(2x+8)+(4x+4) | | 4x=90-50 | | 6−4y=-3y | | 8+5b=7b | | 4c=10+6c | | 5x^2+12x-5=0 | | 13x=-x^2-36 | | 21x=18x+18 | | 22=-5t^2+15t+12 |