If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-10x+3=0
a = 8; b = -10; c = +3;
Δ = b2-4ac
Δ = -102-4·8·3
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2}{2*8}=\frac{8}{16} =1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2}{2*8}=\frac{12}{16} =3/4 $
| 12x+6=48 | | x+40=86 | | 2x(15-0,5Y)+Y=30 | | x^2-5=x-4 | | 7-3x=-2x+0 | | 2x/7-3/4=x/14+1/2 | | 5/9-77x/12=1/6-x/8 | | -3x-19=-2x-12 | | 10-6*b=20 | | -6x+5+4x=-13 | | 125/a=25 | | i+15=2 | | 12−3w=3 | | i=15=2 | | 4x+40=2x+26 | | -4-2y=14 | | 2x-7-6x=1 | | 2x-7-6x=3 | | 3s+1=16 | | 6x+40=3x+25 | | 5t+3=-0.5(t+2) | | 13+22=x+0 | | 10w-44=2w+12 | | y/13=14 | | n3+5=6 | | -0.9x^2+1.7x+2.5=0 | | i+5=2 | | n3+ 5= 6 | | 7x+64=4x+37 | | 2x-(1x+1)=0 | | 9=5x+4x+9 | | 3i=27 |