If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-10x-3=0
a = 8; b = -10; c = -3;
Δ = b2-4ac
Δ = -102-4·8·(-3)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-14}{2*8}=\frac{-4}{16} =-1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+14}{2*8}=\frac{24}{16} =1+1/2 $
| 15x-5=15x+6 | | y/2+7/10=-(4/5) | | (x^2/12)+(43-2x)=90 | | y/2+7/10=-4/5 | | 9x+14=22 | | 9x+-14=22 | | 2x^2-6+-3=0 | | 6-2(x-2)=-2(3-x) | | y/3+4/15=-2/5 | | 32=x4*4 | | 2x+-17=13 | | 12/11=p/12 | | x+5/6=2x-5/8 | | Y=x(2x-5)(2x+7) | | 3(3n+4)=8(8n+8)+1 | | 4m+8=92-2 | | 2-3/4k=1/8k+19 | | 12=5t-4.9t^2 | | .75m+1.75=4.75 | | 71/2=2x+5(11/5) | | r+2r-13=25 | | x/2+20=8 | | 3r=5r-14 | | 3k-3k=-4k-12 | | (X-2)^2+(y+1)^2=5^2 | | 2x^2+8x-50=0 | | 1-n=-2n+7 | | 8^2x-1=32 | | 3v+13=58 | | x/7+x=5/14 | | -2x^2+16x-6=0 | | 32-3c-4=2c+10+c |