If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-12x-16=0
a = 8; b = -12; c = -16;
Δ = b2-4ac
Δ = -122-4·8·(-16)
Δ = 656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{656}=\sqrt{16*41}=\sqrt{16}*\sqrt{41}=4\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{41}}{2*8}=\frac{12-4\sqrt{41}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{41}}{2*8}=\frac{12+4\sqrt{41}}{16} $
| 13x2-8x-6=0 | | 8x2-16x-1=0 | | 4x2-16x+18=0 | | y=13/37 | | (3b-4)=5(b+6) | | 17^x=1 | | y=-2(37.5-0.5y)+75 | | (2x-5)+(3x+15)=180 | | 0.3x+1.7x=12 | | 4/9=10/a | | 5.4^x+3*8.2^2x-1=4.8^3x | | 5(2x-3)=2(3x+4) | | 28y+5=49y= | | 3=9(3x-3) | | 3=9(3x-3 | | 6n+13=40 | | -7x=-x+18 | | 10u=170 | | 2x+3=-8x+5 | | 5x+4=-4x+6 | | 2=1.732^x | | x^2-3x-28=12 | | -12(6p+16)=7 | | h=-16t+48t+15 | | 5.8=g+2.713 | | 10x-48=68 | | 2x^2+25x-80=0 | | -12+7y=9 | | (7u-24)+(6u-28)=65 | | y/(-3)-5=23 | | 86/17=19/x | | 86/17=91/x |