If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-150x+670=0
a = 8; b = -150; c = +670;
Δ = b2-4ac
Δ = -1502-4·8·670
Δ = 1060
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1060}=\sqrt{4*265}=\sqrt{4}*\sqrt{265}=2\sqrt{265}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-150)-2\sqrt{265}}{2*8}=\frac{150-2\sqrt{265}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-150)+2\sqrt{265}}{2*8}=\frac{150+2\sqrt{265}}{16} $
| -7x+56=-13x+92 | | -7x+56=-13+92 | | 10x-60=19x-114 | | -6x-21=-9x-39 | | .5x^2=x+6 | | -3x-30=-6x-54 | | -7=-4x | | $35h+15=155$ | | -13x=-22x | | 3/4+b=21 | | 23x+70=15x+46 | | -14x-132=-9x-87 | | 2x=-198 | | 9=7+u/5.12 | | 5+w=-7 | | -1.001+a=-1.765 | | (3x+2)+1=(22-x)+5 | | -4x-8=-2+12 | | x=-2x+57 | | 12-2x3=30 | | t^2-19t=0 | | 5x-4+2x=3x+8+7x | | -(-2x+1)=9−14x | | 3.5=-7y+25.9 | | x=-2(x-5)-124+6(x+3) | | x×x+5=26 | | -1.12=4+y/4 | | 61+(3x+14)=90 | | 7x-5=x+19 | | -5x-7=x+23 | | 5+3(2x-7=5+6x-21 | | 15.51=232.65/29k |