If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-19x-9=0
a = 8; b = -19; c = -9;
Δ = b2-4ac
Δ = -192-4·8·(-9)
Δ = 649
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{649}}{2*8}=\frac{19-\sqrt{649}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{649}}{2*8}=\frac{19+\sqrt{649}}{16} $
| 7x2-15x+18=0 | | 20x2-14x+14=0 | | 10x2-16x-12=0 | | y=32.8(359.2) | | 10x2-17x-19=0 | | 2x2-17x-12=0 | | 9x2-12x+18=0 | | 11x2+12x-11=0 | | 16x2-4x+17=0 | | 16x2-17x-1=0 | | 12x2-4x-3=0 | | 19x2-16x-19=0 | | 17/89=19/x | | (39-x)/9=4 | | x+3/2x-7-2x-1/x-3=0 | | 4y+3=367 | | x+1/x+x-5/3x=2x+9/4x | | 1/2k+4/k=k/k+2 | | 8-x=5x-40 | | 8-5x=-40-x | | x(x-10)=10 | | 3d*4=9 | | 31-6h=43 | | .x-58=42 | | 45+10r=68 | | 2.4(x-3)=0.6(3-2x( | | 1/5*(x-8)+4+x/4+x-1/7=7-23-x/5 | | 10a=408+7a | | 5e+4=45 | | 49^x-7^(x-1)-8=0 | | 7t^2-t-56=0 | | 3x=19+4x |