If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-24x-432=0
a = 8; b = -24; c = -432;
Δ = b2-4ac
Δ = -242-4·8·(-432)
Δ = 14400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{14400}=120$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-120}{2*8}=\frac{-96}{16} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+120}{2*8}=\frac{144}{16} =9 $
| a(a+64)=180 | | a^2*6a-51=0 | | 800+75w=1,072-58 | | 10x-9-9=14x-9-5x | | -3x-4+2=17 | | 4x+2-6=24 | | 3x-10+2x=4x+5 | | 19=4(2)^x+7 | | -7/6y=63 | | |7x+3|=−59 | | (10x+20)=(72-3x) | | 4x+7=10x-59 | | 30=5x=10 | | (x+1)+207+145=360 | | 71+45+143+x=360 | | 10/7x-60=x | | x/3-x-4/2=2x-7/5-17 | | 15=5x+10/2 | | 71x+45+143=360 | | 113+75+(97+x)+40=360 | | 194+106+5x=360 | | 5v-5=14 | | -5y+25=-6Y | | 75+50m=175 | | 4^(2x)-5x4^x+4=0 | | -12x(x+2=0 | | √(50x)–√(18x)=√2 | | Y=-|x-3| | | (15x+28)+(8x+83)=180 | | 15x+28=8x+83 | | 3a-5a+4a=0 | | 6x^2-12x+30=0 |