8x2-4+3x2=7x2+x2+14

Simple and best practice solution for 8x2-4+3x2=7x2+x2+14 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8x2-4+3x2=7x2+x2+14 equation:



8x^2-4+3x^2=7x^2+x2+14
We move all terms to the left:
8x^2-4+3x^2-(7x^2+x2+14)=0
We add all the numbers together, and all the variables
11x^2-(7x^2+x2+14)-4=0
We get rid of parentheses
11x^2-7x^2-x2-14-4=0
We add all the numbers together, and all the variables
3x^2-18=0
a = 3; b = 0; c = -18;
Δ = b2-4ac
Δ = 02-4·3·(-18)
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{6}}{2*3}=\frac{0-6\sqrt{6}}{6} =-\frac{6\sqrt{6}}{6} =-\sqrt{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{6}}{2*3}=\frac{0+6\sqrt{6}}{6} =\frac{6\sqrt{6}}{6} =\sqrt{6} $

See similar equations:

| 5p-1+3p=-25 | | 11+.33(9w-12)=-5(5+w) | | 2x+5=2x-5= | | 90–12x=3090-120=30 | | -6x-18+3x+2=14 | | z/9=20 | | -4+6y=6-6y | | 2x+5=2x+5= | | -5(4t-3)+6t=5t-5 | | |8x-5|=|11-8x| | | 8x+27x-9=7(5x+10) | | 5x+7=2x+12 | | 2.50h*13=3 | | n+7/18=1 | | 12=10x−6−x | | 3=-5+r/2 | | 2(u-7)-1=-2(-8u+9)-2u | | -5x+7=-2(3x-4)+3 | | 6m(-3m+8)=16 | | 65=x+229 | | 3x2+6x-52=-7 | | 4/9x+5/9x−5=−88 | | 3÷8u=24 | | -2(x+2)-3=-7 | | 6-5/6x=7/6-4 | | 4x-9=2x=15 | | 2y+12=8(y-3) | | -3z–1=8-3z | | -7m+40=2(8-5m) | | -2(x+2)=3=-7 | | 2(5x-3)+4(x+8)=11 | | 1/2(10+12n)=1/2(15n+15) |

Equations solver categories