If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-4x-10=0
a = 8; b = -4; c = -10;
Δ = b2-4ac
Δ = -42-4·8·(-10)
Δ = 336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{336}=\sqrt{16*21}=\sqrt{16}*\sqrt{21}=4\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{21}}{2*8}=\frac{4-4\sqrt{21}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{21}}{2*8}=\frac{4+4\sqrt{21}}{16} $
| 6s+13=67s= | | x3^+13/2=20 | | x3+13/2=20 | | 2/3x-7=1/3-1/6x | | -x2+90x-2000=0 | | 3*x/2-(30)=0 | | 2x+3-8+x=55 | | 3(4d+1)-9d=6(2+d | | x=5+(-9.8)(0.51) | | x=5+(-9.8)(0.71) | | x=5+9.8(0.71) | | x=5+9.8(0.51) | | 3y-2/3+2y+3/3=y+7/6 | | 2.5(6.5r-7.8)=94.9 | | 15000=x+(x*0.9) | | e+5=20-3e | | d+5=20-3d | | 9x/4=81x/20 | | 20=n^2-3n | | 3x/4+2=9x-6 | | 27x/15=81/25 | | 0=5.0+9.8t | | (3-x)^2=25 | | 0=5.0+(-9.8)t | | a2+16=0 | | 20=n(n-3) | | X^2-5x-2=6 | | 30/4x=15/2x | | 27x-5=(4x-2)/5 | | Y=-1/5x+4 | | x÷8=10 | | 64x+9=0 |