If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-512=0
a = 8; b = 0; c = -512;
Δ = b2-4ac
Δ = 02-4·8·(-512)
Δ = 16384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16384}=128$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-128}{2*8}=\frac{-128}{16} =-8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+128}{2*8}=\frac{128}{16} =8 $
| 45+36x=66+23x+31 | | 5x+7=2x-8x | | 3x-6=-4x+2 | | 3x-6=-4+2 | | 3(p-)=8+p | | y=3,6+7 | | 13x+8-9x+10=14x+10-2 | | 5x-405=0 | | 3(x+12)=5(2x+1) | | (y+5)^2=2y^2+18y+37 | | 3x-11/5+6=8 | | Mk=19° | | 9x+6=5x+8 | | 3x-11/5=8 | | 4x2-400=0 | | 8–3(x–4)=4 | | M+2/3m-1+1=6-m/m+1 | | 4x-1x2=x+7 | | 7x(x+2)=21 | | 7·(x+2)=21 | | (3w+4)-(5w+1)=w | | 2^x=0.36 | | 4/3x+5/5=13 | | 39x=x | | v/2/9=90 | | -6(2t+9)=-114 | | x+x(.075)=148.45 | | 8=4^3x | | 3x-16°=2x+10° | | (4x+7)=12x2+21x | | -10(s+5)=-66 | | (2x-30)(x+60)=180 |