If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-6x=0
a = 8; b = -6; c = 0;
Δ = b2-4ac
Δ = -62-4·8·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6}{2*8}=\frac{0}{16} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6}{2*8}=\frac{12}{16} =3/4 $
| -10+y=-56 | | x^2-7x=5x-20 | | 70-6x=-11x+20 | | 17.98+7.02-2.9f=-19.24-10.8f | | x+8.5=110.5 | | 3.25-3u=2u | | 1.86/x=-10 | | 22=-x/5+20 | | 1x-2.1(x+2)=3(x+1.5) | | -2f-1=-8f-7 | | -4(x+4)-2=-6 | | 70-6x=11x+20 | | -23=4-4r+1-5r | | 20k-4k-2=20+18k | | 2x^-8x-24=0 | | 3m-1=4——1 | | 134=-10z+14 | | 6c=12-6c | | -50=x-7 | | -5/7x-2/21x+1/3x=-30 | | 18=–3(c+14) | | 39+7x+8=11x+7 | | 18t+6=14+20t | | 400=12(10)(x+24) | | 5/20=6/n | | (x+8/2)=(7/x+3) | | (10x+16)=54° | | 24=12x(3+11) | | –6d=–17−7d | | 3j+11.13=-10.32-3.5j | | 10x-30=260 | | 3q+q-2q=18 |