If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-8x+1=0
a = 8; b = -8; c = +1;
Δ = b2-4ac
Δ = -82-4·8·1
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{2}}{2*8}=\frac{8-4\sqrt{2}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{2}}{2*8}=\frac{8+4\sqrt{2}}{16} $
| 45/x=5/3=x/12 | | 7x+28=9x+2x+4 | | 11x+13,5=41 | | 4/5m-1/3m=14 | | 45/x=5/3=x/13 | | x/5=12/30 | | 6x-10,5=19,5 | | -12x+60=-120 | | 4(15-y)+2y=42 | | 5x-5=3×-9 | | 12=x6+2x | | 5+3x-5×=8 | | 32x-26=150 | | -6+2x=-3x+4 | | 2(3t-1)+t=6-1 | | 132x-26=150 | | -11/2=-2⅓+31/6k | | 5x²+10x+3=0 | | 3x-3=32.5 | | X+2x+2x=30 | | I-3/4=2i+1 | | -11/2=7/3+19/6k | | 90x-10=260 | | 20x-9+10x+9=90 | | 5n=n/2-18 | | 99x-10=260 | | 8(y-7)=-48 | | 21=3/7n | | 7-p=p+8/3 | | 4(x2-10)=9 | | 5a+5=60 | | 7+5x=3x+3 |