If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2=135
We move all terms to the left:
8x^2-(135)=0
a = 8; b = 0; c = -135;
Δ = b2-4ac
Δ = 02-4·8·(-135)
Δ = 4320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4320}=\sqrt{144*30}=\sqrt{144}*\sqrt{30}=12\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{30}}{2*8}=\frac{0-12\sqrt{30}}{16} =-\frac{12\sqrt{30}}{16} =-\frac{3\sqrt{30}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{30}}{2*8}=\frac{0+12\sqrt{30}}{16} =\frac{12\sqrt{30}}{16} =\frac{3\sqrt{30}}{4} $
| 4=5w-11 | | 5s+7=27 | | 4x-25-121=0 | | 7=13-2m | | 4q+15=47 | | 33=4a | | 1=10-f | | 20-4x=6- | | 6x^2+5x-2+3=0 | | x=4(x)=16 | | 3x+7,x=6 | | x^-2x+9=0 | | 12.55x=99.032 | | |11y|=0 | | 6p+2=-10 | | a+(a-4)=(a+5)-(a+ | | g^2-4g=7 | | y=500(1,05) | | +7x-6x=0+12+20 | | 9x=1077 | | -2+c+C2=0 | | a^2+2a+20=180 | | 6(2n+5)=6 | | 4x+7x-2x-5=22 | | 10/(2x-3)=2 | | -4x(2x-3)=-20 | | 10x=-7x | | 1.2x=1.8 | | X+20=x+3/4 | | 9x+9/2=-108 | | 25x-2=125x | | 3x-7=6x+7 |