If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2=180
We move all terms to the left:
8x^2-(180)=0
a = 8; b = 0; c = -180;
Δ = b2-4ac
Δ = 02-4·8·(-180)
Δ = 5760
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5760}=\sqrt{576*10}=\sqrt{576}*\sqrt{10}=24\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{10}}{2*8}=\frac{0-24\sqrt{10}}{16} =-\frac{24\sqrt{10}}{16} =-\frac{3\sqrt{10}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{10}}{2*8}=\frac{0+24\sqrt{10}}{16} =\frac{24\sqrt{10}}{16} =\frac{3\sqrt{10}}{2} $
| 4(x+2)-10x=2(x+3)+2x | | 0+20p=120-20p | | x+4/5(x)=27 | | x^2+2x-147=0 | | (6x−30)+(8x+28)=180 | | -x^2+0-75=0 | | -8.7-6z-7.4-4z=-9z+10.4 | | 3x-7(x+1)=-8x-11 | | 2x^2+1=159 | | X2+6x+3=-10 | | 2x+10=7x+-5 | | 8x2+15x=7x−4 | | q/4+6=9 | | 3(2-4x)=10 | | s+90=265 | | 3x+3+4x+5=2x+23 | | 4(8g+10)-2g=-10-10+10g | | 2x+7-5x=13 | | x+0.08x=174.96 | | 360=(6x+30)+(10x+22) | | 360=6x+30+10x+22 | | -4.1n-2.96=-2.7n-1.7 | | 174.96=x+0.8x | | 4(t+6)-18=-14 | | 55,000=10,000(1.05)3x | | 11x-7+116࿀=1+7x+7x | | x-0.9x=54 | | 5(6400-4y/5)+4y=6400 | | 250+10w=150+20w | | x/13=73 | | 4w+20=80 | | 3x-4=4×+5 |