If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2=24
We move all terms to the left:
8x^2-(24)=0
a = 8; b = 0; c = -24;
Δ = b2-4ac
Δ = 02-4·8·(-24)
Δ = 768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{768}=\sqrt{256*3}=\sqrt{256}*\sqrt{3}=16\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{3}}{2*8}=\frac{0-16\sqrt{3}}{16} =-\frac{16\sqrt{3}}{16} =-\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{3}}{2*8}=\frac{0+16\sqrt{3}}{16} =\frac{16\sqrt{3}}{16} =\sqrt{3} $
| (1/2)^x=2.25 | | 7x+18=(23–8x) | | 7x+18=23+8x | | 7x+18=23–8x | | x(x+1)=x^2+1 | | 5+5b=-45 | | p/14=60 | | 48=2(x-4)-3 | | 6(y+6)=4(4y+8) | | 5(y+.4)=-3 | | 12w-21=12 | | n/5+15=34 | | 10.35+2.3h=-9.2h | | (4x+30)=x | | 33=x+27 | | 33=x+37 | | (6x+4)=(41)180 | | 4-3(2x3)=-2(5x-2)+14 | | 2y+13=5y+31 | | 18-4x=11-4x | | 11y+72=6y+40 | | (6x+4)=(41) | | 11y+72=6y+20 | | 3(v-3)=5v+4-2(-2v-1) | | 77/88=7/n | | (6x+4)+(41)=180 | | 2p+64=4p+40 | | (6x+4)+(81)=180 | | -4(4w-4)+8w=2(w+9) | | 45/n=5/6 | | 8(8y+6)=28 | | 39=36+x |