8y+3y(1/3y-6)=9y+2y+12

Simple and best practice solution for 8y+3y(1/3y-6)=9y+2y+12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8y+3y(1/3y-6)=9y+2y+12 equation:



8y+3y(1/3y-6)=9y+2y+12
We move all terms to the left:
8y+3y(1/3y-6)-(9y+2y+12)=0
Domain of the equation: 3y-6)!=0
y∈R
We add all the numbers together, and all the variables
8y+3y(1/3y-6)-(11y+12)=0
We multiply parentheses
3y^2+8y-18y-(11y+12)=0
We get rid of parentheses
3y^2+8y-18y-11y-12=0
We add all the numbers together, and all the variables
3y^2-21y-12=0
a = 3; b = -21; c = -12;
Δ = b2-4ac
Δ = -212-4·3·(-12)
Δ = 585
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{585}=\sqrt{9*65}=\sqrt{9}*\sqrt{65}=3\sqrt{65}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-3\sqrt{65}}{2*3}=\frac{21-3\sqrt{65}}{6} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+3\sqrt{65}}{2*3}=\frac{21+3\sqrt{65}}{6} $

See similar equations:

| 7.5-2x=3x+1.5 | | 3^4x-5=9^2 | | 22=-3a+7 | | 2(w-1)=8w+4-2(-6w-4) | | 1/2a^2=8 | | 1/2a2=8 | | -120=6x+3(-8x+8) | | 19=+k | | 7y+3y-2y+12=60 | | -5+n+4n+5=0 | | (y^2-11y+28)(4y+28)=0 | | 7y+3y-2y+12=17 | | -4(2u-4)+6u=8+2(3u-3) | | 7x-4+x-6=0 | | 0.4x+160=80+0.8x | | 5x+45=15x | | x(x+3)=3x(x-5) | | -7(2y-6)+3y=7(y+4) | | -7-5x=-12 | | 3.16(x+4.63)=4.19(x-7.24) | | x/3-3=-3 | | F(x)=26-2x+x^2 | | -124=4n-4(1-5n) | | 98=3x-4 | | c-28=-2 | | -7=d-9 | | 3/4x+1/2=-1/2x+1/2 | | -6-2(3v+4)=-11-6v | | -n+9=-3n-1 | | 3n-3=4n+6 | | -3n-3=4n+6 | | 30=8w-20 |

Equations solver categories