If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8y/8y+8+9y+1/2y+2=9y+4/y+1
We move all terms to the left:
8y/8y+8+9y+1/2y+2-(9y+4/y+1)=0
Domain of the equation: 8y!=0
y!=0/8
y!=0
y∈R
Domain of the equation: 2y!=0
y!=0/2
y!=0
y∈R
Domain of the equation: y+1)!=0We add all the numbers together, and all the variables
y∈R
9y+8y/8y+1/2y-(9y+4/y+1)+10=0
We get rid of parentheses
9y+8y/8y+1/2y-9y-4/y-1+10=0
Fractions to decimals
1/2y-4/y+9y-9y-1+10+1=0
We calculate fractions
9y-9y+y/2y^2+(-8y)/2y^2-1+10+1=0
We add all the numbers together, and all the variables
y/2y^2+(-8y)/2y^2+10=0
We multiply all the terms by the denominator
y+(-8y)+10*2y^2=0
Wy multiply elements
20y^2+y+(-8y)=0
We get rid of parentheses
20y^2+y-8y=0
We add all the numbers together, and all the variables
20y^2-7y=0
a = 20; b = -7; c = 0;
Δ = b2-4ac
Δ = -72-4·20·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-7}{2*20}=\frac{0}{40} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+7}{2*20}=\frac{14}{40} =7/20 $
| 5=18x | | X(2)-4=|x| | | -14=6c-13c | | 0=1x^2-6x+9 | | -2a=3-7a | | 5=2×9x | | 3(-5x-1)=-78 | | 4=|x-2| | | -3x^2-6x+21=6x+8 | | 2x/5+5x=16/5 | | -3x^2-6x+21=6x | | -3y-1=2.5 | | -4.8=1.2s+3.2s+4 | | 4g-12gg=5 | | 2/4(8x-4)=-3 | | x-33=62-4x | | 3/4x+5=x+6 | | -5y-8y=39 | | 2x+52+3x+35=180 | | 3(-5x+10)=105 | | 8-2(z-3)=526 | | 4(p-3)=-2+-8 | | -6/11x=2/7 | | 7x-27-3x-5=x-1 | | -3-4n=-35 | | 86=32=6(x-2) | | 2x+4=-(-7x-+6 | | 6y+8=7y-11 | | 49n^2-5=11 | | -4-p=-10 | | -7-6a-5a=3a-5a | | 86=32=6(x-2 |