If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8y^2+10y-5=0
a = 8; b = 10; c = -5;
Δ = b2-4ac
Δ = 102-4·8·(-5)
Δ = 260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{260}=\sqrt{4*65}=\sqrt{4}*\sqrt{65}=2\sqrt{65}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{65}}{2*8}=\frac{-10-2\sqrt{65}}{16} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{65}}{2*8}=\frac{-10+2\sqrt{65}}{16} $
| k+2/3=15 | | 2x+3=-17+7x | | 7.5y—3.25=17 | | 38=5(v-5)+2v | | -8(n-8)=96 | | X-0.08x=736 | | X+5-2x=-3x-18+8-x | | -4=-6y+2(y+4) | | -(a+3)=(-a+1)-2 | | 1+5(x-4)=6x-2(x+2) | | 45=-5y | | 9(9t-4)=12(12+-3) | | 7x7/8+11-1=15 | | 14x+15x-8+2=7x+2-8 | | w/2-6=8 | | -1/4r-12=r+3 | | 3/x+1/5x=4/5 | | 0.3x-0.2=4.9 | | 1/2x-2=3x-2/3 | | 7a+15=55 | | w+2w=21 | | 5-3x=1+× | | 8=13y-9y | | 2n+3.5=-10.5 | | 3(x+4)-4=3(x-3) | | 92=5x-13 | | 2x+4*8=246 | | 2/3(3x-7)=1/6(x+5) | | (t/t+3)+4=2/t+3 | | -7(5z+6)=27-8z | | 12x-9(5x-2)+4.5x=-5 | | 8t+2=4t-3 |