If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8y^2-5y=+11-13y^2-5y+5
We move all terms to the left:
8y^2-5y-(+11-13y^2-5y+5)=0
We get rid of parentheses
8y^2+13y^2+5y-5y-11-5=0
We add all the numbers together, and all the variables
21y^2-16=0
a = 21; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·21·(-16)
Δ = 1344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1344}=\sqrt{64*21}=\sqrt{64}*\sqrt{21}=8\sqrt{21}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{21}}{2*21}=\frac{0-8\sqrt{21}}{42} =-\frac{8\sqrt{21}}{42} =-\frac{4\sqrt{21}}{21} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{21}}{2*21}=\frac{0+8\sqrt{21}}{42} =\frac{8\sqrt{21}}{42} =\frac{4\sqrt{21}}{21} $
| -34+4d=8(7d+6) | | -4(2t-4)+2t=7t+5 | | (5v-4)÷6=6 | | 7r=14r+27 | | (2x+4)÷3=12 | | X^3–4x^2-21x=0 | | -630=-5(11x+5) | | -2(1-7x)=32+8x | | 5b-75=4b-12 | | 7x+12=13x-1-6x | | -13h=52 | | 1.2c+2.6c=4.50 | | 6y–8=–2y | | -a/5=-14 | | 8y+1/9=9y+4/9 | | 4(x-3)=8(x-9) | | 3X=20=x+x+x+20 | | -x+9=-25 | | y÷4=-10 | | 4(x-2)-8=2(x+2)-12 | | -2x=4x+3 | | 2x+3x+10=15 | | -2x-16=38 | | r-5/6=3/8 | | 12=24-4x | | 5x-4+4x=4x+8 | | 10v-40=4v+16 | | 4x+2=-8.4 | | (0.6^x)=7 | | 5(-4x-5)=-2x | | h÷4=9 | | n+(n+2)+(n+4)=225 |