If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8y^2=4800
We move all terms to the left:
8y^2-(4800)=0
a = 8; b = 0; c = -4800;
Δ = b2-4ac
Δ = 02-4·8·(-4800)
Δ = 153600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{153600}=\sqrt{25600*6}=\sqrt{25600}*\sqrt{6}=160\sqrt{6}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-160\sqrt{6}}{2*8}=\frac{0-160\sqrt{6}}{16} =-\frac{160\sqrt{6}}{16} =-10\sqrt{6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+160\sqrt{6}}{2*8}=\frac{0+160\sqrt{6}}{16} =\frac{160\sqrt{6}}{16} =10\sqrt{6} $
| 840=l+6+7 | | 3x-11+4x+2=-x+47 | | 13x+8=120+6x | | 17+12x=3x-1 | | x+90=124 | | i-2=4 | | 8-3(1+3m)=-9m | | 1/3x24=x | | -(8+6x)+8x=20 | | 7x+14=8.40 | | 49x=2205 | | 78=18+3k | | 60(-17q+12)-75q=15(-70q+43) | | -5x+120=0 | | x=14=34 | | 10x-100=5x+100 | | 4(2x+8)=47 | | -19-7a=-5-7(a+2) | | y/4−12=–11 | | n+-9=10 | | -4x+4-x+9=-12 | | 1/6(2x-110)=4x | | 4(b−72)=12 | | 7-3x+6x=-29 | | 2x-4(x+3)=12 | | 11x-1+8x-4+90=180 | | –13−6u=–13−12u+6u | | x=-16+1/2 | | 6(d+4)=78 | | 2x=144-2x | | –t+8=15 | | -36f+52=3(-14f+19)-8 |