If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8y=12y^2
We move all terms to the left:
8y-(12y^2)=0
determiningTheFunctionDomain -12y^2+8y=0
a = -12; b = 8; c = 0;
Δ = b2-4ac
Δ = 82-4·(-12)·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8}{2*-12}=\frac{-16}{-24} =2/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8}{2*-12}=\frac{0}{-24} =0 $
| 0.5r-3.8=6.66 | | 15/y=3.25 | | 4x-16=-15 | | 16-10x=-16x+12 | | 4x2=2⁸x-8 | | .5x+100=250 | | 5x+100=250 | | 13-2x=3x-3 | | (10x+8)=118 | | (10x+8)=98 | | 4x/5+1.6=x | | 4/5x+1.6=x | | 5+2x−3x+10x=5 | | 7x-(3x-9)=33 | | 2=n-14 | | 55=3(2a-1) | | D(3)=4.9t^2 | | 96t-16t^2=-96 | | -1=M(-3)+b | | x.2(-3x+5)=52 | | 1.025^(x)=2 | | 19x-4=120 | | x/3+5.3=-4.3 | | -2(4x+3)–1=x+5 | | 2(3t+4t)+4(5t-t)=0 | | 16.2=-9.4+8v | | 13=u/7.68+7 | | 4(3x+7)-6(4x-5)=10x+3(2x-8) | | 6x*2=8x-4 | | 11=2(-4x)+4 | | (8-u)(4u-7)=0 | | 2x+23+9x-5=180 |