If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8z(8z+1)=0
We multiply parentheses
64z^2+8z=0
a = 64; b = 8; c = 0;
Δ = b2-4ac
Δ = 82-4·64·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8}{2*64}=\frac{-16}{128} =-1/8 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8}{2*64}=\frac{0}{128} =0 $
| (7v-3)(9v-8)=0 | | -10y-4=86 | | -2x=4-x=-17 | | x(9x-2)=0 | | 9/11x=-3/11 | | -7y+28=48 | | x-44625=100x | | 4x+x+8=90 | | 4n+1=-25 | | j(3j+4)=0 | | 0.45x+0.33=-0.66 | | 33x^2+37x+10=0 | | 5y(y+8)=0 | | 0.25x^2=x^2-1 | | 100x4=400 | | 6x-5x=9 | | (k+8)(3k+4)=0 | | 5x/4+3=6 | | 6y/4=21y | | 8x+24-15x-30=10 | | Y=140-2x | | 7x=10+3x+120 | | x=1+5/17 | | 40=30/7+x/7 | | 8m(9m+5)=0 | | Y+3=1/4x | | -y+9=14 | | 5x+45+65=90x | | 2/3-3/5a=1/2 | | 8h(9h-1)=0 | | (q+4)+(4q-8)=180 | | F(x)=x^+4x+6 |