If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8z^2-14z+5=0
a = 8; b = -14; c = +5;
Δ = b2-4ac
Δ = -142-4·8·5
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-6}{2*8}=\frac{8}{16} =1/2 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+6}{2*8}=\frac{20}{16} =1+1/4 $
| 3(2)+12=3(2)+3x | | 136-y=293 | | 28x=1 | | 131=-v+174 | | 5(x+1)=3x-21 | | 131=−v+174 | | 131=−-v+174 | | (2x+3)(x+5)=(4x−1)(½x+6) | | (8+7)x=8x+28 | | 8x-81=x | | -(2/3)x+5=x+7 | | -12=5+8x | | (x+50)=(x+10)+4x | | 2*x/2 =2x-3 | | x/2 =2x-3 | | 24+2y=2 | | 9+5y=23.56 | | 4y+2=27+6 | | 1/x=0.38708 | | 6(4.5-x)=11.5 | | t*4-2=11 | | 6(4.5-x)=-11.5. | | 9x+5=23.56 | | -9x+20=40 | | 5y^2-20y+42=0 | | -1(x-12)+2(x+2)=4x+16 | | 93+42+x+15=180 | | 88+59+x+10=180 | | 63+79+2x=180 | | 19=5(4x+2)+21x | | 90+33+x+15=180 | | x*9+3=-5 |