If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8z^2=5
We move all terms to the left:
8z^2-(5)=0
a = 8; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·8·(-5)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*8}=\frac{0-4\sqrt{10}}{16} =-\frac{4\sqrt{10}}{16} =-\frac{\sqrt{10}}{4} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*8}=\frac{0+4\sqrt{10}}{16} =\frac{4\sqrt{10}}{16} =\frac{\sqrt{10}}{4} $
| 14x+9=16x-35 | | 3y/5+3/2=7y/10 | | 2m+75=0.75m+125 | | 6(e-1)+2e=10 | | 7n+8=62 | | 15=-3(-2x+3) | | 2/3x+7+1/6x=1/2 | | 7x-7=46 | | -10-10=4x-6x | | 3x-14+2x+15+-7=180 | | d-44/9=4 | | 720=x^2+4x^2 | | x/9+2x/2=1/3 | | d-44/9=9 | | (7x+1)/2+(x-3)/7=4 | | 13x-2=18-7x | | 2t+4=t/4+18 | | 10x/7-3/7=1/7 | | 2√x+4=14 | | -6+2e=6 | | -30=-6+4v | | −2∣3−5x∣+5=-13 | | 2n+3n+8=42 | | 1=1.6x+48 | | 2/11=r/13 | | 1=h4− 2 | | 9x+18=6x+27 | | 5^(3x+7)=2^(x-1) | | 122=c−294 | | 5x/7-3/7=1/7 | | 64=7x+4 | | (x-9)/2=12 |