If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9(2x-1)-3x=3(12+x)x
We move all terms to the left:
9(2x-1)-3x-(3(12+x)x)=0
We add all the numbers together, and all the variables
9(2x-1)-3x-(3(x+12)x)=0
We add all the numbers together, and all the variables
-3x+9(2x-1)-(3(x+12)x)=0
We multiply parentheses
-3x+18x-(3(x+12)x)-9=0
We calculate terms in parentheses: -(3(x+12)x), so:We add all the numbers together, and all the variables
3(x+12)x
We multiply parentheses
3x^2+36x
Back to the equation:
-(3x^2+36x)
15x-(3x^2+36x)-9=0
We get rid of parentheses
-3x^2+15x-36x-9=0
We add all the numbers together, and all the variables
-3x^2-21x-9=0
a = -3; b = -21; c = -9;
Δ = b2-4ac
Δ = -212-4·(-3)·(-9)
Δ = 333
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{333}=\sqrt{9*37}=\sqrt{9}*\sqrt{37}=3\sqrt{37}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-3\sqrt{37}}{2*-3}=\frac{21-3\sqrt{37}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+3\sqrt{37}}{2*-3}=\frac{21+3\sqrt{37}}{-6} $
| 9x/4=-11 | | (x-8)2=127-18x | | 8x+5=7(2x+5) | | -2x=3/2 | | x+4x+(x-30)+(2x-10)=360 | | -6x-8=-5(3x-2) | | 200+100+50+x=1000 | | (x-55)+(2x-65)+3x=360 | | 4(3-x)+2(x+5)=-3x+11 | | (b-15)+3b+(2b+75)=360 | | 5a+(a+80)+(2a+200)=360 | | 4x+7=x−12 | | (5a+30)+5a+(2a+90)=360 | | 75=11b-2 | | 2x=x13 | | 100-50=3x+9x | | 2(x+6)=6-4(-x+9) | | 3x+2=-7-9 | | 0=2a=8 | | 15=4t=1 | | 3x+10-2x=4x+1 | | 20+9x=-30 | | |2x|=-2x | | 360=b-15+3b+2b+45 | | 3x-(3x-6)=20-2x | | 5x+6=4(8x-3) | | 9/x-1=33/x-9 | | 0.21x-2,1=0,63 | | 8(6x+2)=5(x-2 | | (x2-1)=16 | | x-1/2x+1=-1 | | 5x+3-2x=6-3x+7 |