9(2x-1)3x=3(12+x)

Simple and best practice solution for 9(2x-1)3x=3(12+x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9(2x-1)3x=3(12+x) equation:



9(2x-1)3x=3(12+x)
We move all terms to the left:
9(2x-1)3x-(3(12+x))=0
We add all the numbers together, and all the variables
9(2x-1)3x-(3(x+12))=0
We multiply parentheses
54x^2-27x-(3(x+12))=0
We calculate terms in parentheses: -(3(x+12)), so:
3(x+12)
We multiply parentheses
3x+36
Back to the equation:
-(3x+36)
We get rid of parentheses
54x^2-27x-3x-36=0
We add all the numbers together, and all the variables
54x^2-30x-36=0
a = 54; b = -30; c = -36;
Δ = b2-4ac
Δ = -302-4·54·(-36)
Δ = 8676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8676}=\sqrt{36*241}=\sqrt{36}*\sqrt{241}=6\sqrt{241}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-6\sqrt{241}}{2*54}=\frac{30-6\sqrt{241}}{108} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+6\sqrt{241}}{2*54}=\frac{30+6\sqrt{241}}{108} $

See similar equations:

| 5f-2=f+18 | | r*7/9=1/3 | | 13x+–5x+–7x=–8 | | -7x+9-8+3x=17 | | -3m+28=13 | | 2.75+x=26.25 | | q*3=2.4 | | 34=j−12.j= | | h+9=21101112 | | 2e+6=e+10 | | 4x-1=-21-6x | | 25x-x=x-56 | | y=9*5-7 | | 2(6x-10)=31-3(5-3x | | 8*4=d | | 8x-13+4x-2x2x=4 | | 3x-1=-3x-73 | | 2x+3=x+7=180 | | n​-12=5n+57 | | 3-10h=3+9h | | 10x-x=x-15 | | 2b-9=31 | | -3x-5=7x-105 | | 13y+7y-6=14 | | -4v+7/3=-7/4v-5/4 | | -1​(t+3)-10=-6.52 | | 6b+1-5b=7 | | 12f+7=43 | | 8x−2=9x−7 | | 8(x-1=8x-8 | | 11x-3x+20=12 | | 7.4x•3-9=6•74x |

Equations solver categories