If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9(5-3x)=(2/4)(x+4)
We move all terms to the left:
9(5-3x)-((2/4)(x+4))=0
Domain of the equation: 4)(x+4))!=0We add all the numbers together, and all the variables
x∈R
9(-3x+5)-((+2/4)(x+4))=0
We multiply parentheses
-27x-((+2/4)(x+4))+45=0
We multiply parentheses ..
-((+2x^2+2/4*4))-27x+45=0
We multiply all the terms by the denominator
-((+2x^2+2-27x*4*4))+45*4*4))=0
We calculate terms in parentheses: -((+2x^2+2-27x*4*4)), so:We add all the numbers together, and all the variables
(+2x^2+2-27x*4*4)
We get rid of parentheses
2x^2-27x*4*4+2
Wy multiply elements
2x^2-432x*4+2
Wy multiply elements
2x^2-1728x+2
Back to the equation:
-(2x^2-1728x+2)
-(2x^2-1728x+2)=0
We get rid of parentheses
-2x^2+1728x-2=0
a = -2; b = 1728; c = -2;
Δ = b2-4ac
Δ = 17282-4·(-2)·(-2)
Δ = 2985968
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2985968}=\sqrt{16*186623}=\sqrt{16}*\sqrt{186623}=4\sqrt{186623}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1728)-4\sqrt{186623}}{2*-2}=\frac{-1728-4\sqrt{186623}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1728)+4\sqrt{186623}}{2*-2}=\frac{-1728+4\sqrt{186623}}{-4} $
| 4(9x+2=125 | | 8x-(4x+5)=2 | | 8x-4(4x+5)=2 | | 2(5x-10)=4(2x-3) | | 2x/x+2=3x+2/2x | | 4(x+17)=5(x-8) | | 26x-9-15x+3=26x-3-15x+13 | | 0.095=(0.8x/57.5)+x | | 7(5x-2)=166 | | (25x-15)=180 | | x/9+17=-11 | | 0.5(2d−6)=−2 | | 4(2y-3)+2(3y+1)=6y+22 | | -86=4(4x+8)+7x | | 11y+9+6=(7-y) | | -1/2=5/18x | | 5.4625=0.8x+x | | 6u-18=2(u+5) | | -5m-6+6m=-6 | | 5h=-2h+56 | | x13+8=10 | | -12-7m=23 | | 2x+3=12+ | | -4h-15=5 | | -2x=6(-2x+5)-3x | | 4x-4x^2=H | | 10=4a+6a | | 10=-8w+2(w-7) | | 18=14+4(x-6) | | -(5-6x)+5x=-194 | | 12=3+9(x-1) | | 11x+12=18x-2 |